Species specificity in gene expression in the brain

By Edyta Zielinska | August 1, 2012

Excerpt: “Researchers took thin slices from regions of the brain involved in processing visual and sensory information and scanned them for the in situ expression of 1,000 genes that act as markers of cell type or are involved in disease, evolution, or cortical function.”

My comment (in the context of mammals):

Species specific differences in cell type are linked via olfaction and pheromones to differences in tissue type (e.g., cells in tissues). The development of the neuroendocrine and neuroimmune systems is dependent on the central role of gonadotropin releasing hormone (GnRH) nerve cells in brain tissue that regulates the secretion of most, if not all, other hormones that have been indirectly linked from non-olfactory/pheromonal input to brain development and behavior.

The epigenetic effect of nutrient chemicals and pheromones directly links food odors and social odors/pheromones via GnRH to the beneficial effects of homeostasis or detrimental effects of inflammation (as in processes that underlie the development of some cancers). Therefore, the question to be answered is not about the number of genes that act as markers of cell type or are involved in disease, evolution, or cortical function. Indeed, the more important question to first ask is what epigenetic effects of sensory input on receptor-mediated events are directly involved in the development of genetically predisposed diseases.

When researchers examine gene expression in slices from regions of the brain involved in processing sensory information in attempts to locate species specific markers of cell types involved in disease, evolution, or cortical function, shouldn’t they look first at gene expression that is altered by species-specific olfactory/pheromonal input? That might help determine both the differences and the similarities among disease processes common in species from mice to man.

Chemical ecology is, of course, responsible for adaptive evolution via ecological, social, neurogenic, and socio-cognitive niche construction (i.e., brain development). How could anything else but chemicals (nutrient chemicals and pheromones) be responsible for similarities and differences in cell types of the brain in different species?

About James V. Kohl 1307 Articles
James Vaughn Kohl was the first to accurately conceptualize human pheromones, and began presenting his findings to the scientific community in 1992. He continues to present to, and publish for, diverse scientific and lay audiences, while constantly monitoring the scientific presses for new information that is relevant to the development of his initial and ongoing conceptualization of human pheromones. Recently, Kohl integrated scientific evidence that pinpoints the evolved neurophysiological mechanism that links olfactory/pheromonal input to genes in hormone-secreting cells of tissue in a specific area of the brain that is primarily involved in the sensory integration of olfactory and visual input, and in the development of human sexual preferences. His award-winning 2007 article/book chapter on multisensory integration: The Mind’s Eyes: Human pheromones, neuroscience, and male sexual preferences followed an award winning 2001 publication: Human pheromones: integrating neuroendocrinology and ethology, which was coauthored by disinguished researchers from Vienna. Rarely do researchers win awards in multiple disciplines, but Kohl’s 2001 award was for neuroscience, and his 2007 “Reiss Theory” award was for social science. Kohl has worked as a medical laboratory scientist since 1974, and he has devoted more than twenty-five years to researching the relationship between the sense of smell and the development of human sexual preferences. Unlike many researchers who work with non-human subjects, medical laboratory scientists use the latest technology from many scientific disciplines to perform a variety of specialized diagnostic medical testing on people. James V. Kohl is certified with: * American Society for Clinical Pathology * American Medical Technologists James V. Kohl is a member of: * Society for Neuroscience * Society for Behavioral Neuroendocrinology * Association for Chemoreception Sciences * Society for the Scientific Study of Sexuality * International Society for Human Ethology * American Society for Clinical Laboratory Science * Mensa, the international high IQ society