Human Pheromones and Comparative Epigenomics

News link: Lessons from epigenome evolution: Exploring the epigenome’s regulatory function

Excerpt:  “While the genome of an organism contains all its genes, it is the epigenome that decides which are expressed, or “turned on.”

Article link: Comparative Epigenomic Annotation of Regulatory DNA

My Comment:

In a recent review article: Human pheromones and food odors: epigenetic influences on the socioaffective nature of evolved behaviors I detailed how the epigenetic effects of nutrient chemicals from the ecological niche cause social niche construction via the metabolism of the nutrients to pheromones, which control reproduction and diversity in species from microbes to man. In mammals, the ecological niche and social niche contribute equally to construction of the neurogenic niche responsible for our cognitive niche.

It should surprise no one that nutrient chemicals and pheromones are responsible for the development of the mammalian brain that enabled construction of our cognitive niche. For example, I used the honeybee model organism to detail how what the queen eats determines the production of her pheromones that are responsible for everything that influences the behavior of the colony, including the neuroanatomy of the worker bees’ brain.

What surprises me is that anyone would dispute the significance of modeling behavioral development across the ecological, social, neurogenic, and cognitive niche construction domains by incorporating the epigenetic effects of nutrient chemicals and pheromones on intracellular signaling and stochastic gene expression. Not only do these epigenetic effects directly connect the sensory environment to the development of behavior, but they do so via the conservation of gonadotropin releasing hormone and diversification of its receptor-mediated events. The obvious conclusion is “olfaction and odor receptors provide a clear evolutionary trail that can be followed from unicellular organisms to insects to humans.”

Does anyone think a different conclusion is likely to result from the comparative epigenomic annotation of regulatory DNA or of non-coding ‘junk’ DNA? In my model the ‘junk’ must be there to allow production of the de novo olfactory receptors required for adaptive evolution. If I’m wrong, is there another model for that? If nutrient chemicals and pheromones do not cause the changes in intracellular signaling that cause the stochastic gene expression required for individual survival and the reproduction of species, what sensory cause does result in direct effects on gene expression and adaptive evolution in species from microbes to man?

We can only hope that as works like the one linked above proceed, that similarities and differences in species are considered. My preference is for more consideration of the similarities across species from microbes to man that are apparent in their common molecular biology.

About James V. Kohl 1307 Articles
James Vaughn Kohl was the first to accurately conceptualize human pheromones, and began presenting his findings to the scientific community in 1992. He continues to present to, and publish for, diverse scientific and lay audiences, while constantly monitoring the scientific presses for new information that is relevant to the development of his initial and ongoing conceptualization of human pheromones. Recently, Kohl integrated scientific evidence that pinpoints the evolved neurophysiological mechanism that links olfactory/pheromonal input to genes in hormone-secreting cells of tissue in a specific area of the brain that is primarily involved in the sensory integration of olfactory and visual input, and in the development of human sexual preferences. His award-winning 2007 article/book chapter on multisensory integration: The Mind’s Eyes: Human pheromones, neuroscience, and male sexual preferences followed an award winning 2001 publication: Human pheromones: integrating neuroendocrinology and ethology, which was coauthored by disinguished researchers from Vienna. Rarely do researchers win awards in multiple disciplines, but Kohl’s 2001 award was for neuroscience, and his 2007 “Reiss Theory” award was for social science. Kohl has worked as a medical laboratory scientist since 1974, and he has devoted more than twenty-five years to researching the relationship between the sense of smell and the development of human sexual preferences. Unlike many researchers who work with non-human subjects, medical laboratory scientists use the latest technology from many scientific disciplines to perform a variety of specialized diagnostic medical testing on people. James V. Kohl is certified with: * American Society for Clinical Pathology * American Medical Technologists James V. Kohl is a member of: * Society for Neuroscience * Society for Behavioral Neuroendocrinology * Association for Chemoreception Sciences * Society for the Scientific Study of Sexuality * International Society for Human Ethology * American Society for Clinical Laboratory Science * Mensa, the international high IQ society