Evolution at work sans random mutations

Evolution at work: Even yeast mothers sacrifice all for their babies

Excerpt:Mitochondria are the mini powerhouses of living cells, supplying the chemical energy all yeast and higher life forms need to survive. Like all cellular life, yeast need these structures to survive. In the new paper, the UCSF team describes how yeast cells ferry just the right amount of mitochondria along a network of protein tracks and molecular motors into the young yeastlings, which bud off their mother like mini-me’s.

From the article in Science: “Yeast cell size is known to respond to changes in metabolism brought about by nutritional environment (11), suggesting perhaps that a delay in mitochondrial inheritance somehow altered the cell’s metabolic state even though its environment remained unchanged.”

My comment: In my model, the phrase “from microbes to man” refers specifically to this yeast species, Saccharomyces cerevisiae (i.e., a microbe) where nutrient chemicals determine not only sexual orientation but also sexually dimorphic pheromone production as in all species due to the epigenetic effects of nutrient chemicals and their metabolism to pheromones that control reproduction.

Clearly, if I were to use a representation where yeast cells have mothers, I would be ridiculed in any attempt to convey the levels of biological complexity required to those who are unfamiliar with the basic principles of biology and levels of biological organization required to link sensory input directly to adaptive evolution in species from microbes to man (e.g., epigenetically). Thus, I am happy to see someone else attempt to use terminology that would otherwise be rejected — if only because those rejecting it understand nothing about the biological complexity of gene x environment interactions.

For a good explanation about the biological complexity that is involved see also: Commentary: Variation and Causation in the Environment and Genome. Unfortunately, this article gives the impression that less is known than has already been modeled in the context of the epigenetic effects of nutrition and pheromones and the microRNA / messenger RNA homeostasis that they control via intermolecular changes in DNA.

About James V. Kohl 1308 Articles
James Vaughn Kohl was the first to accurately conceptualize human pheromones, and began presenting his findings to the scientific community in 1992. He continues to present to, and publish for, diverse scientific and lay audiences, while constantly monitoring the scientific presses for new information that is relevant to the development of his initial and ongoing conceptualization of human pheromones. Recently, Kohl integrated scientific evidence that pinpoints the evolved neurophysiological mechanism that links olfactory/pheromonal input to genes in hormone-secreting cells of tissue in a specific area of the brain that is primarily involved in the sensory integration of olfactory and visual input, and in the development of human sexual preferences. His award-winning 2007 article/book chapter on multisensory integration: The Mind’s Eyes: Human pheromones, neuroscience, and male sexual preferences followed an award winning 2001 publication: Human pheromones: integrating neuroendocrinology and ethology, which was coauthored by disinguished researchers from Vienna. Rarely do researchers win awards in multiple disciplines, but Kohl’s 2001 award was for neuroscience, and his 2007 “Reiss Theory” award was for social science. Kohl has worked as a medical laboratory scientist since 1974, and he has devoted more than twenty-five years to researching the relationship between the sense of smell and the development of human sexual preferences. Unlike many researchers who work with non-human subjects, medical laboratory scientists use the latest technology from many scientific disciplines to perform a variety of specialized diagnostic medical testing on people. James V. Kohl is certified with: * American Society for Clinical Pathology * American Medical Technologists James V. Kohl is a member of: * Society for Neuroscience * Society for Behavioral Neuroendocrinology * Association for Chemoreception Sciences * Society for the Scientific Study of Sexuality * International Society for Human Ethology * American Society for Clinical Laboratory Science * Mensa, the international high IQ society